Mediante el uso de imágenes del cielo, tomadas por una cámara de video, facilita hacer predicciones locales, precisas y de alta resolución temporal, lo que ayuda - entre otras cosas - a controlar la demanda y a aumentar el uso de energías renovables.
En el mundo se instalan 40 mil paneles solares por hora, lo que refleja el atractivo de las fuentes de energía renovables -como la eólica y la solar- desde el punto de vista ambiental y económico. Sin embargo, éstas generan desafíos importantes, ya que su producción depende de factores climáticos externos que no pueden controlarse.
Por ejemplo, la energía generada por un parque eólico depende de la cantidad de viento en un día determinado; la energía de un panel solar de la capa de nubes, las condiciones climáticas, etc., todo lo cual puede variar drásticamente con el transcurso de minutos. Para que la energía solar se desarrolle completamente, se integre a las redes de energía existentes y se administre de manera eficiente, debemos conocer su generación futura.
Es importante entonces predecir la producción de energía a escala de minutos y segundos, conocida como pronóstico a corto plazo o pronóstico inmediato, que es crítica cuando se gestionan las operaciones en una red de energía inteligente, asegurando la continuidad de energía, mejorando la eficiencia del sistema y propiciando el uso de fuentes renovables. En esa línea, la predicción basada en modelos climáticos, datos satelitales, o modelos predictivos fundados en datos de generación históricos se vuelve inadecuada debido a su baja resolución espacial y temporal. De hecho, las estaciones meteorológicas son típicamente pocas y escasas: la estación más cercana a un panel solar podría estar demasiado lejos para ser confiable, los satélites geoestacionarios tienen una resolución relativamente limitada, y modelos predictivos basados en datos de potencia del panel solar no son suficientes.
En este contexto, el proyecto "Deep photovoltaic nowcasting" (Predicción a corto plazo de generación de energía solar usando imágenes del cielo) -desarrollado por el Dr. Rodrigo Verschae, académico del Instituto de Ciencias de la Ingeniería de la Universidad de O´Higgins, los investigadores Jinsong Zhang y Jean-François Lalonde de la Laval University, Canadá, y Shohei Nobuhara, de la Kyoto University, Japón- busca hacer una proyección al corto plazo, local, precisa y de alta resolución, de la generación de energía solar fotovoltaica.
"Saber cuál va a ser la generación de energía solar nos permitiría, por ejemplo, controlar la demanda o reducir el tamaño de la batería, donde almacenemos en forma temporal la energía. La tendencia establecida en Chile y el mundo, es que el foco actualmente está puesto en eficiencia energética; el siguiente paso tiene que ver con un control de precios: te dicen las horas punta del costo de la energía entonces buscas consumir en otro momento; lo que viene a futuro tiene que ver con poder decidir en tiempo real, en razón de la energía renovable que hay disponible -y del uso de otras fuentes de generación y de consumo- quién va a consumir y cuándo, coordinando todos los equipos de manera automática. En una comunidad se podrían organizar varias casas e industrias en función de la disponibilidad y en forma automática, esa es una gran motivación para realizar este trabajo", explicó el Dr. Verschae.
El nowcasting, conocido como pronóstico a corto plazo a escala de minutos o predicción inmediata, puede beneficiarse de las imágenes del cielo capturadas por una cámara de video instalada cerca del panel solar. Sin embargo, estimar las condiciones climáticas a partir de estas imágenes (intensidad del sol, apariencia y movimiento de las nubes, etc.) es una tarea difícil con las técnicas tradicionales de visión por computador.
En este trabajo, los investigadores entrenaron un sistema que aprenden automáticamente la relación entre la apariencia del cielo -incluyendo nubes, sol, cielo despejado, etc.- y la generación de energía fotovoltaica del panel solar. En particular, utilizaron técnicas avanzadas de Deep Learning que aprenden de manera eficiente a combinar una secuencia de observaciones de la generación de energía y una secuencia de imágenes del cielo, obteniendo un modelo compacto y capaz de predecir con precisión la generación futura.
"Lo que proponemos es instalar una cámara de video mirando al cielo, en el techo de una casa o edificio, cerca de paneles solares, que toma cuatro fotos cada segundo para generar una imagen de gran rango dinámico, y luego una secuencia de estas imágenes nos permite ver, dónde está el sol, cómo se mueven las nubes y cuándo van a ocluirlo, impidiendo la generación de energía solar. En base a esa información podemos predecir cuándo va a haber menos energía, con una resolución muy precisa. Lo que se plantea en este trabajo es usar dos fuentes de información: tanto las imágenes del cielo como la generación de energía solar que obtenemos de un sensor de potencia instalado en el panel solar", comentó el Dr. Verschae.
Esta investigación, financiada por la Japan Science and Technology Agency, también se destaca porque busca resolver el problema de la predicción de energía solar reemplazando las tecnologías más tradicionales por un modelo de Deep Learning, que utiliza algoritmos de aprendizaje dentro del área de la inteligencia artificial. Los académicos comparan varios tipos de redes neuronales profundas (Deep Learning), exponiendo que funcionan mejor que el modelo base, y utilizan un modelo que incluye información temporal tanto de las imágenes como de la fuente de energía fotovoltaica, revelando que se puede hacer una predicción muy precisa en el corto plazo mediante varias medidas de error.
ANTECEDENTES DEL PROYECTO
El proyecto, que se desarrolla desde el 2017, cuenta con seis meses de información obtenido con cámaras instaladas en la Universidad de Kyoto. "Este tipo de sistemas, además de ayudar a predecir energía solar, podría servir para algunos modelos climáticos: pronosticar clima en el corto plazo o para controlar variables en edificios inteligentes, y otra cosa que nos interesara tiene que ver con trabajar con plantas solares, no sólo con paneles y si instalas más de una cámara, podrías -por ejemplo- predecir qué parte del panel va a estar oculta", expuso el Dr. Verschae.
El artículo que se generó a partir de este proyecto internacional fue publicado en la prestigiosa revista Solar Energy, y espera ser implementado en el mediano plazo en Chile: "Nos gustaría ejecutarlo en el país, y seguir desarrollando investigación en esta área. Actualmente estamos analizando cuál es la mejor forma de financiar el proyecto y buscando socios para su implementación", aclaró el Dr. Verschae.
Respecto de la importancia de ser parte de un proyecto de esta envergadura, el Dr. Verschae sentenció que "Esta es una investigación que refleja la importancia de la colaboración internacional, donde se juntaron distintos expertises, la gente de la Universidad de Kyoto tiene mucha experiencia en el trabajo con imágenes; con armar sistemas de captura de los datos y modelos, mientras que los profesionales de Canadá tienen mucha expertise en modelos de iluminación. Y, también es muy importante desde el punto de vista de ser investigación aplicada que es publicada en una revista de alto impacto en el sector de la energía, aunque todos los autores trabajamos principalmente en el área de visión computacional y modelos de aprendizaje"./